

सत्यमेव जयते

A study for development of low cost alternative

Presentation Overview

- The need
- Standards
- Requirements
- Network technology selection
- Proposed network architecture
- Road Map for Development
- Cost of Deployment
- Questions?

The Need

UIC CODE 660: Technical Compatibility of high speed trains

- Max. Axle Loads
- Min. acceleration values
- Safety requirements
 - Bogie Stability
 - Bearing Monitoring
 - Alarms
 - Brake application
 - Speed control

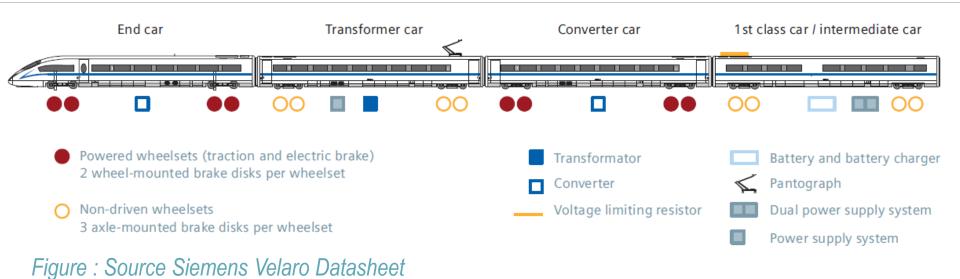
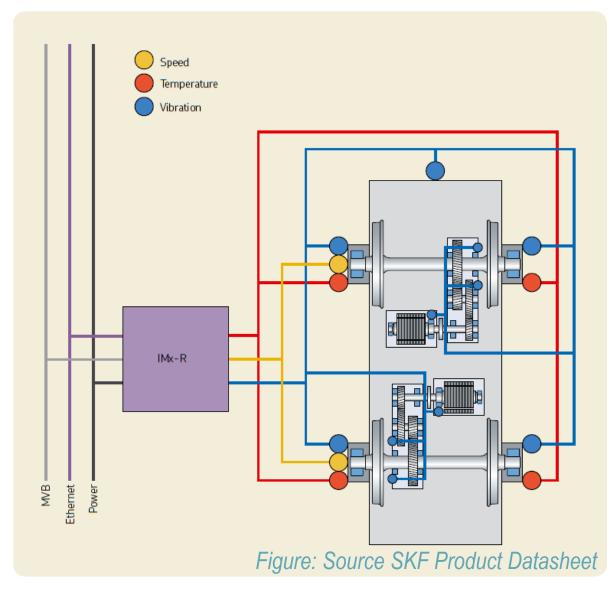


Photo: Source Wikipedia

- Siemens Velaro
 - DB ICE (Germany)
 - RENFE (Spain)
 - CRH (China)
 - RZD (Russia)
 - Eurostar
 - TCDD (Turkey)

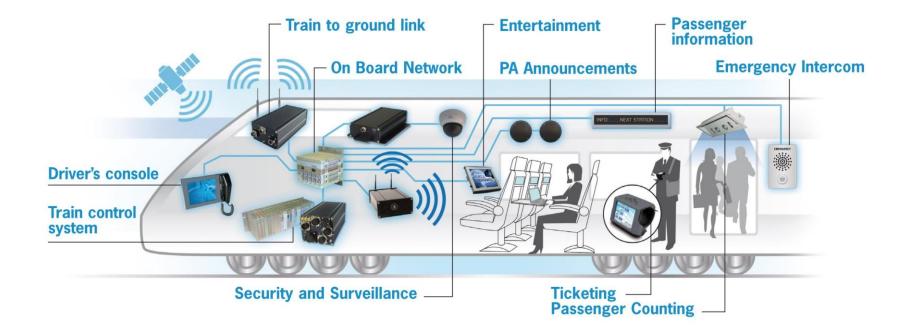
The Need



- Distribution of equipment over train set
- Requires mission critical control communications
- Dedicated analog wiring is not a solution
 - Complexity & Cost
 - Maintainability & Reliability

The Need: Wiring Complexity & Cost

- Powered Bogie Monitoring
 - 17 sensors
 - 2 buses
 - Power
 - Comm.
- In analog form
 - 17 cables
 from each
 bogie!
 - A Rat's nest!



The Need

- Requirement of a communication network
 - High availability
 - Deterministic
 - Fault tolerant
 - Standard
 - Interoperable

The Need

Network Infrastructure for TCMS

Survey: Technology / Standards

- UIC
 - IEC 61375
 - MVB / WTB (2007)
 - CCN / ETB (2012)
 - UIC 556
- AAR
 - S-590
 - S-9356
 - M-9155

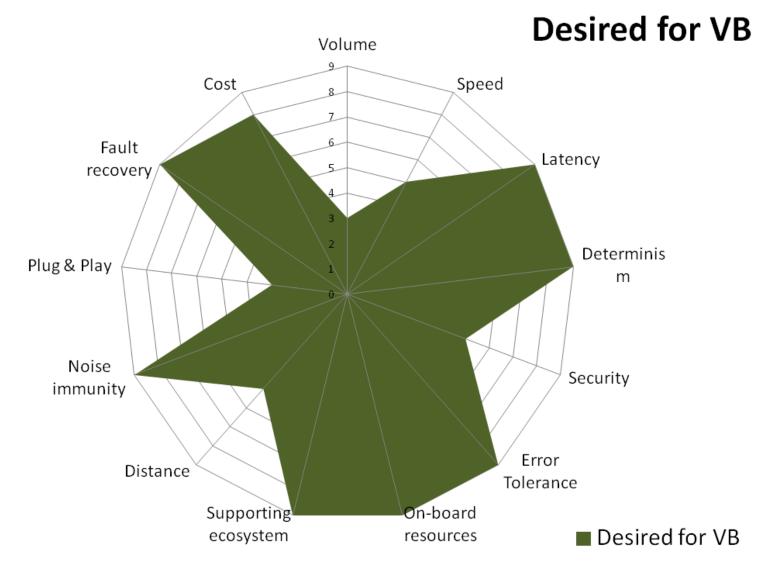
- Proprietary implementation
 - Ethernet only
 - CAN / CAN Powerline
 - Lonworks
- Problem with standards is implementation is not standardized
- Cost and suitability?
- Which one ? Or a New One

Identified Requirements

- Application Requirements
 - Control Communications
 - Intra-vehicle
 - Inter-vehicle
 - External to the train (train to ground & train to train)
 - Passenger Infotainment
 - Displays and announcement
 - Media Streaming
 - Internet Access
 - Surveillance Systems

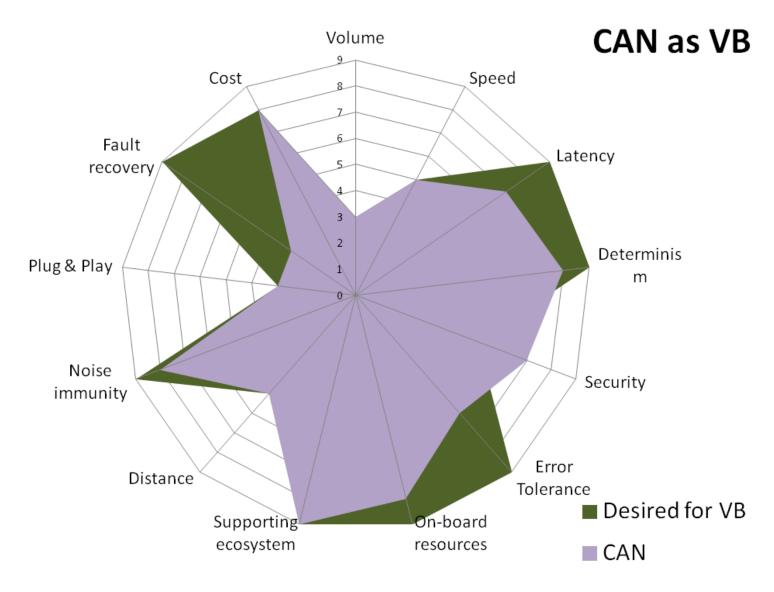
Network Technology: Selection

- Initially planned only on Ethernet
- CON'S
 - Lack of determinism
 - Heavy computing resource requirement
 - Low data efficiency for low volume data transfer
- Consensus for 2-tier approach
 - Between controllers on a vehicle
 - Between vehicles of a train
 - Train to ground to be handled by gateways
 - Outside the scope of this project

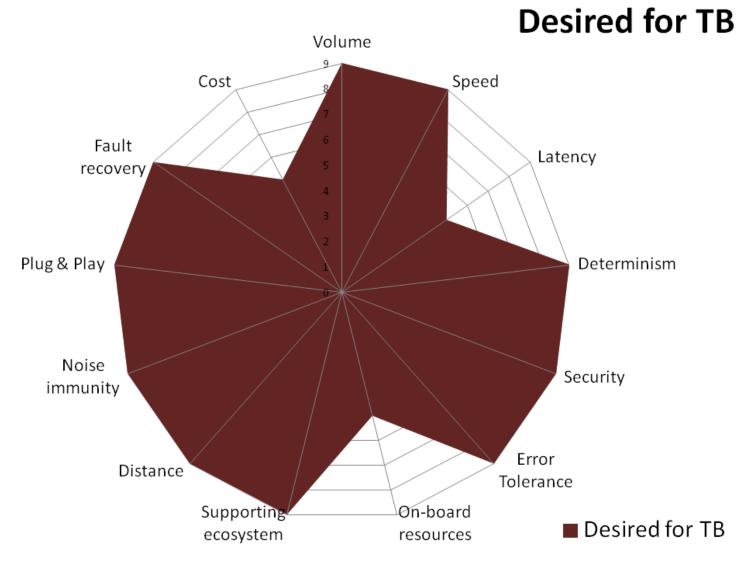


Technology Selection: Criteria

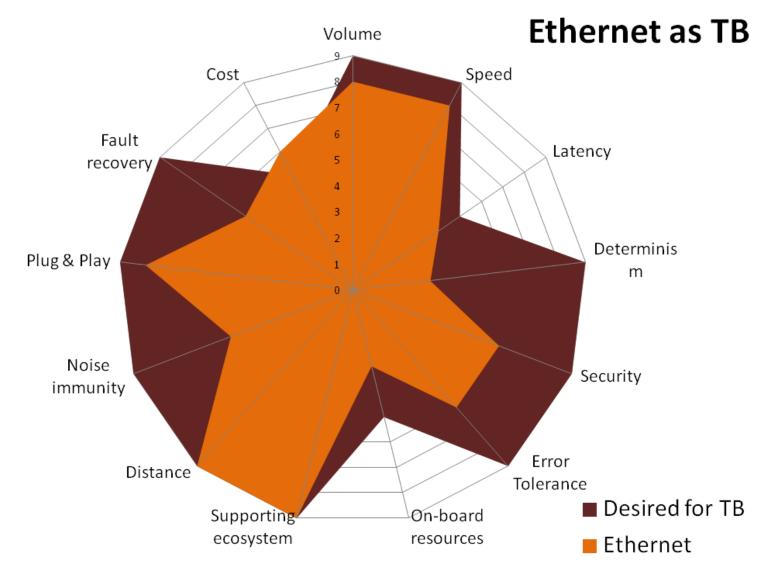
Critoria Catagory	Sub Critoria	Capability / Requirement		
Criteria Category	Sub-Criteria	Low (1)	High (10)	
	Volume	Low	High	
	Speed	Low	High	
Nature of Data	Latency	High	Low	
Nature of Data	Determinism	Low	High	
	Security	Poor	Reliable	
	Error Tolerance	Poor	Reliable	
Complexity of	On-board resources	Heavy	Light	
implementation	Supporting ecosystem	Limited	Vast	
Physical characteristics	Distance	Short	Long	
riysical characteristics	Noise immunity	Poor	Good	
Eastures at lower lavors	Plug & Play	Poor	Rich	
Features at lower layers	Fault recovery	Poor	Rich	
Equipment Cost	Cost	High	Low	



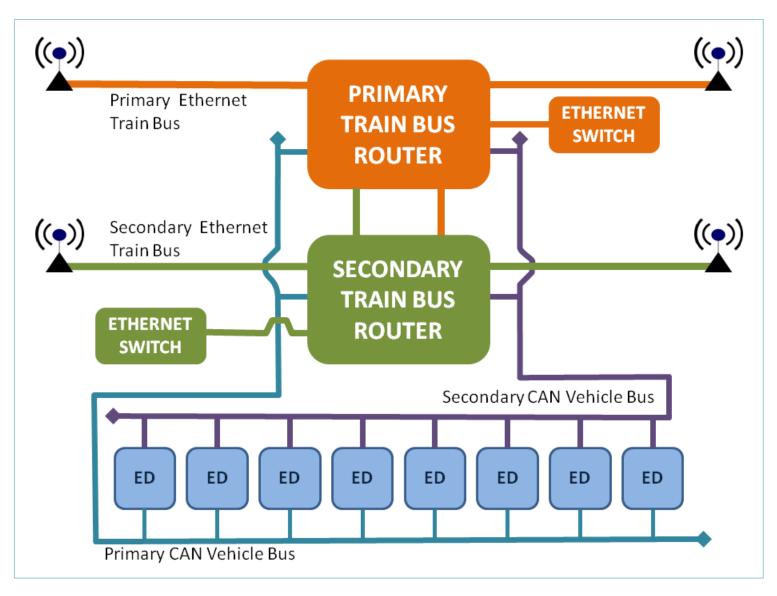
Technology Selection: Criteria for VB



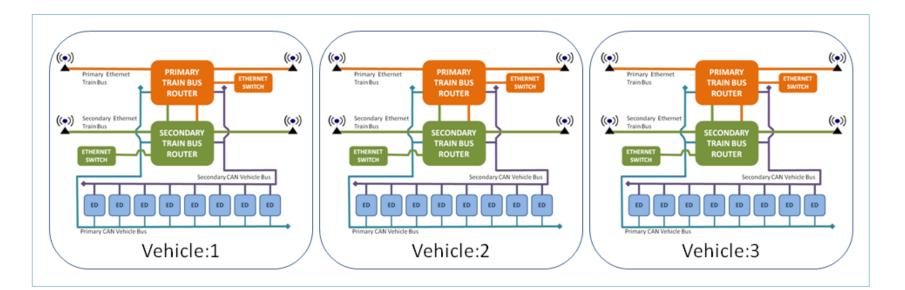
Technology Selection: Criteria for VB



Technology Selection: Criteria for TB



Technology Selection: Criteria for TB



Network Architecture: Proposed

Network Architecture: Proposed

Explore wireless for inter-vehicle connectivity

Road Map: Equipment

- Ethernet / CAN Train Bus Routers
 - Wireless inter-vehicle connections
 - Use open source software and customize
 - DD-WRT as a start point
 - Integration of TRDP
 - TCNOpen Project
- Software Stack for CAN Interfaces
 - Open source stacks available
 - Customize to handle dual CAN buses
- Design goal

 To free applications from communications handling

Road Map: Conformance Testing

- Why testing facility?
 - Requirements dedicated to Indian Railways
 - Cannot expect suppliers / other labs to invest
 - All equipment to be tested at the time of integration
 - Interoperability
- How?
 - Application level testing laboratory
 - Develop standard test protocol software
 - Simulate the communication network of a 26 vehicle train

TCN with WTB-MVB interfaces									
Veh. 1	Гуре WTB-MVB Equip.		MVB Equip.						
Туре	No.	Qty./Veh.	Cost		Qty./Veh	Cost		Total	
Loco	2	1	\$	5,700	30	\$	860	\$	63,000
Coach	24	1	\$	5,700	20	\$	860	\$	5,49,600
	TOTAL							\$	6,12,600
	TCN with ETB-CAN interfaces								
Veh. 1	Veh. Type ETB Equip.		CAN Equip.						
Туре	No.	Qty./Veh		Cost	Qty.	Cost		Total	
Loco	2	2	\$	2,500	60	\$	50	\$	16,000
Coach	24	2	\$	2,500	40	\$	50	\$	1,68,000
						Τ	OTAL	\$	1,84,000

Questions?

"If you are not failing every now and again, it's a sign you aren't doing anything very innovative"

~Woody Allen

OSI Model

	Data Unit	Layer		Function	
Host Layer	Data s	7	Application	Network process to application	
		6	Presentation	Data representation, encryption and decryption, convert machine dependent data to machine independent data	
		5	Session	Inter-host communication	
	Segments	4	Transport	End-to-end connections, reliability and flow control	
Media Layer		3	Network	Path determination and logical addressing	
	Frame	2	Data-link	Physical addressing	
	Bit	1	Physical	Media, signal and binary transmission	

